陈银波的知识小站

  • 首页
  • 数学
  • 算法
  • 图
  • 数据
  • 记忆
复杂 = f (简单1, 简单2, ... , 简单n)
  1. 首页
  2. 数学
  3. 正文

高阶导数题四大解法一文搞定

19 5 月, 2024 4636点热度 2人点赞 36条评论

0. 基础 n 阶四公式形式

二阶以及二阶以上的导数,统称高阶导数

高阶导数四大解法:

  • 变形成 n 阶四公式形式

  • 莱布尼茨公式(常需利用 n 阶四公式)

  • 泰勒公式化得多项式

  • 观察规律法

首先,要想解高阶导数又快又准,n 阶四公式绝对是基础中的基础,所以,请务必记住 n 阶四公式:

  • \({(x^m)}^{(n)}=m(m−1)(m−2)\cdots(m−n+1)x^{m−n}\ (m \ge n)\)

  • \({(a^x)}^{(n)}={(\ln_{}{a})}^{n}a^{x}\)

  • \({(ln⁡x)}^{(n)}=\frac{{(−1)}^{n−1}(n−1)!}{x^n}\) (由 \({(ln⁡_{}{x})}^{\prime}=\frac{1}{x}\) ,有 \({(\frac{1}{x})}^{(n)}=\frac{{(−1)}^{n}n!}{x^{n+1}}\) )

  • \({(\sin⁡ x)}^{(n)}=\sin (x+\frac{n\pi}{2})\) ( \({(\cos ⁡x)}^{(n)}=\cos (x+\frac{n\pi}{2})\) )

所谓 n 阶四公式,即幂函数、指数函数、对数函数、三角函数最简单形式的 n 阶导数的值。

但是通常,题目不会直接让我们求这四个函数,一般我们要求的,都是 n 阶四公式形式的函数,比如说,求的是 \({(ax+b)}^{(n)}\) ,\({[\ln_{}{⁡(ax+b)}]}^{(n)}\),\({[\sin (kx+b)]}^{(n)}\)。

我们只要记住了形式简单的 n 阶四公式,就可以很快地推出 n 阶四公式形式的函数。

所以,现在,请立刻开始把 n 阶四公式记住,不要说留到后面再背,告诉自己,我现在就要记住 n 阶四公式,并且我不会忘了。

只有我们有坚定说要去记住,才真的更容易记牢,这是我自己的感受。

好,现在我们记住了 n 阶四公式。因为是最简单的形式,所以记起来也还行。

ok,前面说了这么多,其实就讲了一样东西,叫 n 阶四公式。为了检验你是否掌握,请你拿出纸笔,求:

\(𝑓(𝑥)=\ln_{}{⁡(1−x)}\) 的 n 阶导数。(答案在文末,题号为 ① )

上面的问题你答对了吗?答对了就点个赞吧!

好,现在,停下来,休息一下,放松地思考一下,下面两个问题:

\({[{(ax+b)}^𝑚]}^{(n)}\) ,\({[\ln_{}{⁡(ax+b)}]}^{(n)}\) , \({[\sin (kx+b)]}^{(n)}\)

  • 上面的三个 n 阶导数求出来是什么?

  • 它们比对应的原来的 n 阶四公式多出了什么?或者说有什么联系和区别。

问题难度适中,相信你能思考出来。

如果你已经掌握了 n 阶四公式,我们就进入本文的正题吧——高阶导数题的四大解法。

(注:本文的例题和习题都是经过挑选,觉得很经典和不错的题目,绝对值得一做)

1. 变形成 n 阶四公式形式

例题:已知函数 \(f(x)=ln_{}{\frac{⁡1−3𝑥}{1+2𝑥}}\) ,则 \(f^{(n)}(0)=()\) .

解:如果按原来的 𝑓(𝑥) 的形式一次次求导,感觉会有点复杂,尝试将其化成 n 阶四公式形式,即

\(f(x)=\ln{}{⁡\frac{1−3x}{1+2x}}=\ln_{}{⁡(1−3x)}−\ln_{}{⁡(1+2x)}\)

这样一来,对 \(f(x)\) 求 n 阶导就相当于分别对 \(\ln_{}{⁡(1−3x)}\) 和 \(\ln_{}{⁡(1+2x)}\) 求 n 阶导然后相减。

根据 n 阶四公式中对数函数的 n 阶导数的值,我们可以快速推导出

\({[\ln_{}{⁡(1+𝑎𝑥)}]}^{(n)}=\frac{{(−1)}^{n−1}a^n(n−1)!}{{(1+ax)}^n}\) ,所以

\(f^{(n)}(x)={(−1)}^{n−1}(n−1)!\left [\frac{{(−3)}^n}{{(1−3x)}^n}−\frac{2^n}{{(1+2x)}^n}\right ]\) ,则有

\(f^{(n)}(0)={(−1)}^{n−1}(n−1)![{(−3)}^n−2^n]\)

小结:问题解答完成,由此可见,对于一个复杂的函数,可以化成 多个n 阶四公式形式的函数,再利用 n 阶四公式,快速推导其出 n 阶导数的值,进而求得复杂函数的 n 阶导数的值。

拿出纸笔,快速做一下下面这道题练练手吧。

习题:已知函数 \(𝑓(𝑥)=\frac{1}{x^2−1}\) ,求 \(f^{(5)}(x)\) .(答案在文末,题号为②)

耐心一点,请确保能解开上一道习题再继续阅读。

开始第二种方法之前,请问自己,是否了解过莱布尼茨公式,公式是怎么样的,是用来干什么的。如果答案是否定的,请停止阅读本文,通过书本或上网对莱布尼茨公式进行初步了解,能够回答这两个问题后,再继续阅读。

(学习不总是“线性”的。通过一个问题,可以牵带出相关的问题。然后带着对相关问题的好奇,去了解它们,逐步深入,这是我自己很喜欢的一种学习的方式,好奇和求知欲也应该并且可以成为我们学习的动力。)

2. 莱布尼茨公式

例题:已知函数 \(f(x)=x^2\ln{}{(1-x)}\) ,当 \(n \ge 3\) 时, \(f^{(n)}(0)=()\) .

解:看着像两个函数相乘的形式,并且 \(x^2\) 在导数大于2后为0,所以可以考虑一下使用莱布尼茨公式。则有,

\(f^{(𝑛)}(x)=C_{n}^{0}x^2{[\ln_{}{(1−x)}]}^{(n)}+C_{n}^{1}(x^2)^{\prime}{[\ln_{}{(1−x)}]}^{(n-1)}+C_{n}^{2}(x^2)^{\prime\prime}{[\ln_{}{(1−x)}]}^{(n-2)}\)

因为 \({[\ln_{}{(1−x)}]}^{(n)}=\frac{(n-1)!(-1)}{{(1-x)}^n}\) ,

\({[\ln_{}{(1−x)}]}^{(n-1)}=\frac{(n−2)!(−1)}{{(1−x)}^{𝑛−1}}\) ,

\({[\ln_{}{(1−x)}]}^{(n-2)}=\frac{(n−3)!(−1)}{{(1−x)}^{𝑛−2}}\) ,

\({(x^2)}^{\prime}=2x\) , \({(x^2)}^{\prime\prime}=2\) .

所以 \(f^{(n)}(x)=x^2\frac{(n-1)!(-1)}{{(1-x)}^n}+2xn\frac{(n−2)!(−1)}{{(1−x)}^{n−1}}+2\frac{n(n−1)}{2}\frac{(n−3)!(−1)}{{(1−x)}^{n−2}}\)

故 \(f^{(n)}(0)=−\frac{n!}{n−2}\) .

小结:例题解答完成,通过观察我们可以发现,莱布尼茨公式解 n 阶导数适用于:

  • 两个函数相乘

  • 其中一个函数在求高阶导数后会变为 0

这样的函数。

当遇到这样的函数时,使用莱布尼茨公式。对于求其中需要求 n 阶导数的(本题中是 \(\ln_{}{⁡(1−x)}\) ),需要变形成 n 阶四公式形式(即方法一),然后利用 n 阶四公式推导进行解决。

此外,当要求的是 \(f^{(𝑛)}(0)\) 时,有的项其实并不需要计算。比如在本题中, \(f^{(𝑛)}(𝑥)\) 的前面两项是不需要计算的。

例题讲完了,你现在能解决下面这一道习题吗?

习题:函数 \(f(x)=x^22^𝑥\) 在 \(x=0\) 处的 𝑛 阶导数 \(f^{(n)}(0)=()\) .(答案在文末,题号为③)

能够看到这里,高阶导数的类型题基本也能解决一大半了,在坚持一下吧,后面的内容不会很难。

下面的方法会涉及泰勒公式和麦克劳林公式,统称为泰勒公式化多项式法。这里还是默认大家已经掌握了泰勒公式。

3. 泰勒公式化多项式

例题:已知函数 \(f(x)=x^{100}e^{x^2}\) ,则 \(f^{(200)}(0)=()\) .

解:使用前面两种方法似乎解决不了本题,尝试使用泰勒公式。

由麦克劳林公式,得

\(f(x)=x^{100}(\sum_{k=0}^{n}\frac{x^{2k}}{k!}+o(x^{2n}))=\sum_{k=0}^{n}\frac{x^{2𝑘}+100}{k!}+o(x^{2n+100})\)

取 \(n=50\) ,根据多项式求导的性质,由

展开式中 \(x^{200}\) 项的系数是 \(\frac{1}{50!}\) \(\Rightarrow\) \(f^{200}(0)=200!\frac{1}{50!}\)

小结:根据我个人的经验,利用莱布尼茨公式法和泰勒公式化多项式是考察比较多的,而且常常这两种方法是同一道题的两种解法。

之所以把变形成 n 阶四公式法放在第一个,是因为这种方法最基础的方法,并且在一些时候,这种方法也是后面这两种方法的基础,起到辅助解题的作用。

这次,请你尝试用泰勒公式化多项式法,解决一下,上面莱布尼茨公式法的习题吧。

习题:函数 \(f(x)=x^22^x\) 在 \(x=0\) 处的 𝑛 阶导数 \(f^{(n)}(0)=()\) .(答案在文末,题号为④)

当上面三种方法,三种通用套路,看起来都没办法解决的时候,我们只能祭出观察规律法。

数学难题常常就出现在需要观察的题目上。有时候,一个函数,你观察到它潜在的某种特点、或者可以进行某种不常见的变形、或者有某种几何性质,便能够很快速地解决掉题目,但如果观察不出来,就真的绞经脑汁也解不出来。观察题和套路题一定程度上是对立的(当然对于身经百战的解题者,观察题也是套路题)。观察题是让人又爱又恨的,它常常是让人困惑的,但也常常是美妙的。

废话有点多了,下面进入第四种方法——观察规律法。

4. 观察规律法

例题:已知函数 \(f(x)\) 在 \((-\infty,+\infty)\) 上连续,且 \(f(x)={(x+1)}^2+2\int_{0}^{x}f(t)dt\) ,当 \(n\ge2\) 时, \(f^{(n)}(0)=()\).

解:尝试按上面三种套路思考,发现似乎都行不通,于是尝试使用观察规律法。

观察、思考,不难想到 \({(x+1)}^2\) 在导数等于 3 后会变成 0。于是尝试对 \(f(x)\) 求前 3 次导数。

\(f^{\prime}(x)=2(x+1)+2f(x)\) ,

\(f^{\prime\prime}(x)=2+2f^{\prime}(x)\) ,

\(f^{\prime\prime\prime}(x)=2f^{\prime\prime}(x)\) ,则

\(f^{(n)}(x)=2f^{(n-1)}(x)=2^2f^{(n-2)}(x)=\cdots=2^{n-2}f^{\prime\prime}(x)\ (n\ge2)\)

而 \(f(0)=1\) , \(f^{\prime}(0)=2+2=4\) , \(f^{\prime\prime}(0)=10\)

因此 \(f^{(n)}(0)=5*2^{n-1}\)

小结:观察规律法,通常是尝试求前几阶导数,然后进行观察,总结导数可能存在的规律。而且有时后,在求解前一二阶导数后,便可以使用前面的三种方法解决了。

习题:已知函数 \(f(x)=\arctan x\) ,求 \(f^{(n)}(0)\) .

5. 下一步做什么

找书本或者网上的高阶导数的题来做吧。认真做个15道高阶导数的题感觉就没什么太大问题了。

最后的提醒,解决高阶导数的问题,几乎就这四种方法不会错。不过有的时候,稍微复杂的题目并不一定是一定用单一的方法解决的,对这四种方法融会贯通,学会综合运用,方能立于不败之地。

答案

① \(\frac{(n-1)!(-1)}{{(1-x)}^n}\)

② \(60\left [ \frac{1}{{(x+1)}^6} - \frac{1}{{(x-1)}^6} \right ]\)

③ \(n(n-1){(\ln_{}{2})}^{n-2}\ (n=1,2,3,\cdots)\)

④ \(n(n-1){(\ln_{}{2})}^{n-2}\ (n=1,2,3,\cdots)\) 。注意化 \(f(x)=x^22^x=x^2e^{x\ln_{}{2}}\) ,然后再泰勒展开。

⑤ \(\begin{cases} 0, & n=2k \\ {(-1)}^k(2k)!, & n=2k+1\end{cases}\)

标签: 导数
最后更新:22 6 月, 2024

陈银波

邮箱:agwave@foxmail.com 知乎:https://www.zhihu.com/people/agwave github:https://github.com/agwave leetcode:https://leetcode.cn/u/agwave

点赞
下一篇 >

文章评论

  • Watch Baseball Online

    There is evidently a lot to realize about this. I believe you made certain nice points in features also.

    9 9 月, 2025
    回复
  • Live Serie A Matches

    I have learn several excellent stuff here. Definitely value bookmarking for revisiting. I wonder how much attempt you set to make one of these excellent informative web site.

    10 9 月, 2025
    回复
  • football live Qatar

    Your home is valueble for me. Thanks!…

    10 9 月, 2025
    回复
  • gullybet slots

    Thank you for sharing with us, I think this website genuinely stands out : D.

    11 9 月, 2025
    回复
  • Lennie Dvorsky

    obviously like your web-site but you need to check the spelling on several of your posts. Several of them are rife with spelling problems and I find it very troublesome to tell the truth nevertheless I will certainly come back again.

    5 10 月, 2025
    回复
  • Watch Boxing Matches Online

    I real pleased to find this internet site on bing, just what I was searching for : D also saved to bookmarks.

    12 10 月, 2025
    回复
  • MMA Live Streaming Online

    Hello There. I found your blog using msn. This is a really well written article. I’ll make sure to bookmark it and come back to read more of your useful information. Thanks for the post. I will certainly comeback.

    12 10 月, 2025
    回复
  • Live Premier League Matches

    I am not really superb with English but I come up this really easygoing to read .

    12 10 月, 2025
    回复
  • Baseball Streaming Platform

    Thank you for sharing superb informations. Your site is very cool. I am impressed by the details that you¦ve on this site. It reveals how nicely you understand this subject. Bookmarked this web page, will come back for extra articles. You, my pal, ROCK! I found simply the info I already searched all over the place and just could not come across. What an ideal site.

    13 10 月, 2025
    回复
  • NBA schedule Qatar

    I do love the manner in which you have framed this specific challenge plus it really does provide me some fodder for thought. On the other hand, from just what I have personally seen, I just trust as the actual remarks stack on that people today continue to be on point and don't embark on a soap box regarding the news du jour. Yet, thank you for this fantastic piece and even though I can not really go along with this in totality, I respect your standpoint.

    13 10 月, 2025
    回复
  • gullybet apk download

    Some really nice and utilitarian information on this website, too I believe the pattern has excellent features.

    14 10 月, 2025
    回复
  • Tara Maddron

    After study a few of the blog posts on your website now, and I truly like your way of blogging. I bookmarked it to my bookmark website list and will be checking back soon. Pls check out my web site as well and let me know what you think.

    2 11 月, 2025
    回复
  • order fat loss stacks online

    I'm still learning from you, but I'm trying to achieve my goals. I absolutely enjoy reading all that is posted on your site.Keep the tips coming. I enjoyed it!

    5 11 月, 2025
    回复
  • buy clenbuterol T3 Ketotifen stack USA

    Hello there, You have done an incredible job. I’ll certainly digg it and personally suggest to my friends. I am confident they'll be benefited from this website.

    5 11 月, 2025
    回复
  • indirizzo per corrispondenza Svizzera

    F*ckin¦ awesome issues here. I¦m very happy to see your post. Thank you a lot and i'm having a look forward to touch you. Will you kindly drop me a mail?

    6 11 月, 2025
    回复
  • grafiche olografiche

    Hiya, I'm really glad I've found this information. Nowadays bloggers publish just about gossips and net and this is actually frustrating. A good web site with interesting content, that is what I need. Thank you for keeping this website, I will be visiting it. Do you do newsletters? Can not find it.

    7 11 月, 2025
    回复
  • alexa138

    Magnificent goods from you, man. I have understand your stuff previous to and you are just extremely excellent. I actually like what you've acquired here, certainly like what you're stating and the way in which you say it. You make it entertaining and you still take care of to keep it sensible. I can not wait to read much more from you. This is actually a terrific site.

    10 11 月, 2025
    回复
  • Neuro Energizer

    hello there and thank you to your information – I have definitely picked up something new from proper here. I did on the other hand expertise several technical issues the usage of this site, since I skilled to reload the site a lot of times previous to I could get it to load correctly. I had been puzzling over in case your web hosting is OK? No longer that I'm complaining, but slow loading circumstances times will often affect your placement in google and can damage your quality ranking if advertising and ***********|advertising|advertising|advertising and *********** with Adwords. Well I’m including this RSS to my email and can look out for a lot extra of your respective intriguing content. Make sure you update this once more soon..

    11 11 月, 2025
    回复
  • gullybet app

    I like this web blog its a master peace ! Glad I detected this on google .

    15 11 月, 2025
    回复
  • motorsport races online

    I got what you mean , appreciate it for posting.Woh I am delighted to find this website through google.

    16 11 月, 2025
    回复
  • watch college football online

    I simply needed to say thanks again. I'm not certain the things I might have handled in the absence of the type of opinions provided by you concerning such subject. It was before a very terrifying difficulty for me personally, but encountering the specialized form you dealt with it made me to weep for fulfillment. Now i'm thankful for your advice and in addition trust you recognize what a great job you are accomplishing educating other individuals by way of your websites. Most likely you've never encountered all of us.

    17 11 月, 2025
    回复
  • watch nfl online

    Greetings from Idaho! I'm bored at work so I decided to check out your blog on my iphone during lunch break. I love the information you present here and can't wait to take a look when I get home. I'm surprised at how quick your blog loaded on my mobile .. I'm not even using WIFI, just 3G .. Anyhow, very good blog!

    17 11 月, 2025
    回复
  • fluffy maltipoo breeder

    There are some fascinating closing dates on this article however I don’t know if I see all of them center to heart. There's some validity but I'll take maintain opinion till I look into it further. Good article , thanks and we want extra! Added to FeedBurner as effectively

    18 11 月, 2025
    回复
  • live hockey streams

    I conceive you have observed some very interesting points, thankyou for the post.

    18 11 月, 2025
    回复
  • navigate to this web-site

    Wonderful work! This is the type of info that should be shared around the net. Shame on Google for not positioning this post higher! Come on over and visit my site . Thanks =)

    23 11 月, 2025
    回复
  • honey trick

    I've been browsing online more than three hours today, yet I never found any interesting article like yours. It is pretty worth enough for me. In my opinion, if all site owners and bloggers made good content as you did, the web will be a lot more useful than ever before.

    30 11 月, 2025
    回复
  • gelatin trick

    Wow, incredible weblog structure! How long have you been running a blog for? you made running a blog glance easy. The full glance of your website is fantastic, as well as the content!

    1 12 月, 2025
    回复
  • pink salt trick

    Regards for helping out, wonderful info .

    2 12 月, 2025
    回复
  • page

    Hi, Neat post. There is a problem with your site in internet explorer, would test this… IE still is the market leader and a big portion of people will miss your excellent writing because of this problem.

    6 12 月, 2025
    回复
  • reference

    Youre so cool! I dont suppose Ive learn something like this before. So good to find someone with some original thoughts on this subject. realy thank you for starting this up. this web site is something that's needed on the web, somebody with a bit of originality. useful job for bringing one thing new to the web!

    6 12 月, 2025
    回复
  • Neurocept

    magnificent post, very informative. I wonder why the other specialists of this sector don't notice this. You should continue your writing. I'm confident, you have a great readers' base already!

    8 12 月, 2025
    回复
  • Watch NFL Online

    You made some good points there. I did a search on the issue and found most persons will approve with your site.

    9 12 月, 2025
    回复
  • Sports Events to Stream Soon

    I really like your writing style, excellent info , regards for posting : D.

    9 12 月, 2025
    回复
  • Volleyball Live Streams Free

    Hello there! I could have sworn I've been to this site before but after checking through some of the post I realized it's new to me. Anyways, I'm definitely happy I found it and I'll be book-marking and checking back often!

    10 12 月, 2025
    回复
  • gullybet free bets

    What i do not realize is in fact how you're not really a lot more well-favored than you might be now. You are very intelligent. You realize therefore considerably when it comes to this subject, made me in my opinion consider it from a lot of numerous angles. Its like men and women are not interested unless it is one thing to accomplish with Girl gaga! Your individual stuffs outstanding. All the time deal with it up!

    13 12 月, 2025
    回复
  • fdertol mrtokev

    You should take part in a contest for one of the best blogs on the web. I will recommend this site!

    19 12 月, 2025
    回复
  • razz evil exclaim smile redface biggrin eek confused idea lol mad twisted rolleyes wink cool arrow neutral cry mrgreen drooling persevering
    取消回复

    文章目录
    • 0. 基础 n 阶四公式形式
    • 1. 变形成 n 阶四公式形式
    • 2. 莱布尼茨公式
    • 3. 泰勒公式化多项式
    • 4. 观察规律法
    • 5. 下一步做什么
    • 答案
    分类
    • 图
    • 工程
    • 数学
    • 数据
    • 算法
    • 记忆
    最新 热点 随机
    最新 热点 随机
    你的重复性工作,我帮你自动化 “沙滩之城” Change Data Capture (CDC) 技术初探 IPv6在物联网中的应用 IPv6首部的改进:简化与优化网络通信
    “沙滩之城”你的重复性工作,我帮你自动化
    简单直观地理解神经网络 图数据分享:深圳地铁数据 IPv6:下一代互联网协议 一笔画问题揭秘:轻松掌握欧拉图与欧拉回路的奥秘 图卷积网络(GCN):一个例子解释从输入到输出维度变化的完整过程
    归档
    • 2025 年 9 月
    • 2024 年 10 月
    • 2024 年 9 月
    • 2024 年 8 月
    • 2024 年 7 月
    • 2024 年 6 月
    • 2024 年 5 月

    COPYRIGHT © 2024 陈银波的知识小站. ALL RIGHTS RESERVED.

    Theme Kratos Made By Seaton Jiang

    粤ICP备2024254302号-1

    粤公网安备44030002003798号