陈银波的知识小站

  • 首页
  • 数学
  • 算法
  • 图
  • 数据
  • 记忆
复杂 = f (简单1, 简单2, ... , 简单n)
  1. 首页
  2. 数学
  3. 正文

二次型化标准型的应用:最值求解

21 7 月, 2024 49740点热度 0人点赞 39条评论

0 前言

线性代数中涉及到的一个非常重要的内容是二次型,而二次型中涉及到的一个非常重要的内容是二次型化标准型。也许很多人对二次型化标准型非常熟悉,但是如果问到二次型化标准型有什么用,可能挺多人会愣一愣。这篇文章给大家带来的就是二次型的一个应用——最值求解。

1 二次型化标准型

下面先简单回顾下二次型、标准型、二次型化标准型

1.1 二次型

二次型是指含有 n 个变量 \(x_1,x_2,\cdots,x_n\) 的二次齐次多项式,即在一个多项式中,未知数的个数为任意多个,但每一项的次数都为 2。它可以表示为如下形式:

\(f(x_1,x_2,\cdots,x_n) = a_{11}{x_1}^2 + a_{22}{x_2}^2 + \cdots + a_{nn}{x_n}^2 + a_{12}x_1x_2 + a_{13}x_1x_3 + \cdots + a_{n-1,n}x_{n-1}x_n\\\)

或者更一般地表示为矩阵形式:

\(f(x) = x^TAx\\\)

其中,\(x = {(x_1,x_2, \cdots,x_n)}^T\) 是变量向量,\(A = {(a_{ij})}_{n \times n}\) 是二次型矩阵,且由于二次型中的系数满足 \(a_{ij} = a_{ji}\),所以A是实对称矩阵。

1.2 标准型

标准型是二次型的一种特殊形式,它只含有平方项,即形如:

\(f(x_1,x_2,\cdots,x_n) = \lambda_1y_1^2 + \lambda_2y_2^2 + \cdots + \lambda_ny_n^2\\\)

其中,\(\lambda_i (i =1,2,\cdots,n)\) 是常数,且 \(y_1,y_2,\cdots,y_n\) 是原变量 \(x_1,x_2, \cdots,x_n\) 的线性变换。在标准型中,每一项都是某个变量的平方,没有交叉项。

1.3 二次型化标准型

二次型化标准型是指通过适当的坐标变换(如正交变换或可逆线性变换),将一般的二次型转化为标准型的过程。这个过程在理论和实际应用中都具有重要意义。

具体步骤通常包括:

  1. 求二次型矩阵 \(A\) 的特征值和特征向量:由于 \(A\) 是实对称矩阵,它一定可以相似对角化,即存在正交矩阵 \(Q\),使得 \(Q^TAQ = \Lambda\),其中 \(\Lambda\) 是对角矩阵,对角线上的元素是 \(A\) 的特征值。
  2. 进行坐标变换:令 \(y = Q^Tx\),则原二次型可以表示为:

    \(\\f(x) = x^TAx = (Qy)^TA(Qy) = y^T(Q^TAQ)y = y^T\Lambda y = \lambda_1y_1^2 + \lambda_2y_2^2 + \cdots + \lambda_ny_n^2\)

这样就将原二次型化为了标准型。

2 极值求解

下面来看看二次型化标准型如何帮助我们计算最值。

假设现在有这样一个二次型

\(f(x) = x^TAx\\\)

其中,\(x = {(x_1,x_2, \cdots,x_n)}^T\) 是变量向量,\(A = {(a_{ij})}_{n \times n}\) 是二次型矩阵。

2.1 化二次型

由于 \(A\) 是实对称矩阵,它一定可以相似对角化,即存在正交矩阵 \(Q\),使得 \(Q^TAQ = \Lambda\)。我们令 \(y = Q^Tx\),则有

\(\\f(x) = x^TAx = (Qy)^TA(Qy) = y^T(Q^TAQ)y = y^T\Lambda y = \lambda_1y_1^2 + \lambda_2y_2^2 + \cdots + \lambda_ny_n^2\)

2.2 观察总结

化完二次型后,接下来求最值就简单很多了。我们仔细看下面这个式子

\(f(x) = \lambda_1y_1^2 + \lambda_2y_2^2 + \cdots + \lambda_ny_n^2\)

如果我们想要求这个式子的最值,\(\lambda_i(i=1,2,\cdots,n)\) 的取值是非常重要的。

2.2.1 特殊情况

我们先来从几种特殊情况入手。

第一种情况,如果对于所有的 \(i = 1,2,\cdots,n\),都有 \(\lambda_i\) 大于 0,那么,无论 \(y_i (i=1,2,\cdots,n)\) 如何取值,都有 \(f(x) \ge 0\),特别地,当对于所有的 \(i = 1,2,\cdots,n\),\(y_i = 0\),那么此时取得最小值 \(f(x) = 0\)。

第二种情况,如果对于所有的 \(i = 1,2,\cdots,n\),都有 \(\lambda_i\)小于 0,那么,无论 \(y_i (i=1,2,\cdots,n)\) 如何取值,都有 \(f(x) \le 0\),特别地,当对于所有的 \(i = 1,2,\cdots,n\),\(y_i = 0\),那么此时取得最大值 \(f(x) = 0\)。

第三种情况,如果对于所有的 \(i = 1,2,\cdots,n\),都有 \(\lambda_i\)等于 0,那么,无论 \(y_i (i=1,2,\cdots,n)\) 如何取值,都有 \(f(x) = 0\)。

好的,我们已经清楚了 \(\lambda_i(i=1,2,\cdots,n)\) 全为正、或全为负、或全为零的情况。

2.2.2 普通情况

现在我们来思考一种相对普通情况,假设 \(\lambda_i(i=1,2,\cdots,n)\) 中,既有正,又有负。

首先我想说,这种情况,没有极大值也没有极小值。我们可以从两个关键点来思考:

  • 当 \(\lambda_i\)大于 0,项 \(\lambda_iy_i^2\) 随着 \(y_i\) 的增大而增大,这意味着在这个方向上,函数值可以变得无限大。
  • 当 \(\lambda_i\)小于 0,项 \(\lambda_iy_i^2\) 随着 \(y_i\) 的增大而减小,这意味着在这个方向上,函数值可以变得无限小。

这意味着不存在最大值和最小值,因为你可以总是找到更大的 y 值使得函数值超越任何给定的界限。

写到这里,我想我们都能至少有些模糊的感受,特征值 \(\lambda_i\) 的正负性非常重要,我们可以发现:

当有 \(\lambda_i\)大于 0时,\(f(x)\) 可以无限大,没有最大值。当 \(\lambda_i\)小于 0 时,\(f(x)\) 可以无限小,没有最小值。

2.3 结论

以上过程,我想表达的是一个思考的过程,从特殊情况到相对普通情况的一个探索,至此,我们对于特征值 \(\lambda_i\) 建立了一些直观感受。下面我们来整理结论(我不会再进行推导,我相信你们思考出来)。给一个标准型,我们可以快速判断其最大值和最小值情况。

对于最大值:

\begin{cases}
无最大值 & \exists \lambda_i > 0 \\
最大值为 0,无论所有 y_i 如何取值 & \forall \lambda_i = 0 \\
最大值为 0,要求\lambda_i < 0 对应的 y_i 取 0,其他 y_i 任取 & 其他\ (\forall \lambda_i\le 0, \exists \lambda_i < 0) \end{cases} 对于最小值: \begin{cases} 无最小值 & \exists \lambda_i < 0 \\ 最小值为 0,无论所有 y_i 如何取值 & \forall \lambda_i = 0 \\ 最小值为 0,要求\lambda_i > 0 对应的 y_i 取 0,其他 y_i 任取 & 其他\ (\forall \lambda_i\ge 0, \exists \lambda_i > 0)
\end{cases}

上面的核心是要注意什么时候应该让 \(y_i\) 取 0,这是我们要思考和留意的点。

好了,到这里,我们已经知道标准型什么时候有最值,以及取得最值时 \(y\) 的取值。

进而,由于 \(y = Q^Tx\),且 \(Q\) 是正交矩阵(可逆),因此,对于任意的 \(y\) 都有唯一对应的 \(x\),于是我们便可以求出取得最值时 \(x\) 的取值。

以上,即为二次型化标准型对于求最值的帮助,学而有益,希望对大家有启发。

标签: 暂无
最后更新:21 7 月, 2024

陈银波

邮箱:agwave@foxmail.com 知乎:https://www.zhihu.com/people/agwave github:https://github.com/agwave leetcode:https://leetcode.cn/u/agwave

点赞
< 上一篇
下一篇 >

文章评论

  • 匿名

    :smile:

    30 8 月, 2024
    回复
  • AlbertImpek

    ivermectin tablets UK online pharmacy <a href=https://meditrustuk.shop/#>MediTrust</a> generic stromectol UK delivery

    9 9 月, 2025
    回复
  • bonus

    I know this if off topic but I'm looking into starting my own weblog and was
    curious what all is required to get set up? I'm assuming
    having a blog like yours would cost a pretty penny?

    I'm not very internet savvy so I'm not 100% certain. Any tips or advice would be greatly appreciated.
    Cheers

    9 9 月, 2025
    回复
  • bong99-178.com

    Yes! Finally something about site.

    10 9 月, 2025
    回复
  • site

    Remarkable! Its genuinely awesome paragraph, I have got much clear idea concerning from this post.

    10 9 月, 2025
    回复
  • https://w88club-178.com

    Because the admin of this site is working, no doubt very rapidly it will be famous, due to its quality contents.

    10 9 月, 2025
    回复
  • j88vip-178.com

    Hey! I'm at work surfing around your blog from my new iphone!
    Just wanted to say I love reading your blog and look forward to all your posts!

    Carry on the great work!

    10 9 月, 2025
    回复
  • k9win

    Everyone loves it when folks get together and share opinions.

    Great website, continue the good work!

    10 9 月, 2025
    回复
  • betway-178.com

    I was excited to uncover this page. I wanted to thank you for ones time
    for this particularly fantastic read!! I definitely appreciated every part of it and
    i also have you saved as a favorite to look at new information on your site.

    11 9 月, 2025
    回复
  • k8vina

    Way cool! Some very valid points! I appreciate you writing this write-up plus the rest of the
    site is really good.

    11 9 月, 2025
    回复
  • ffok-178.com

    Good day! This is kind of off topic but I need some
    guidance from an established blog. Is it tough to set up your own blog?
    I'm not very techincal but I can figure things out pretty fast.
    I'm thinking about making my own but I'm not sure where to start.
    Do you have any points or suggestions? Many thanks

    11 9 月, 2025
    回复
  • bitácora de Ecuador

    Mainjudionline123.com abre las puertas a una bitácora ecuatoriana
    auténtica, donde se narran aventuras, memorias de ciudades y secretos locales.
    Una ventana al Ecuador profundo, lleno de historia,
    gente cálida y naturaleza infinita.

    11 9 月, 2025
    回复
  • betvn

    It's a pity you don't have a donate button! I'd without a doubt donate to
    this outstanding blog! I suppose for now i'll settle for book-marking and
    adding your RSS feed to my Google account. I look
    forward to new updates and will talk about this website
    with my Facebook group. Talk soon!

    11 9 月, 2025
    回复
  • vn888-178.com

    hello!,I like your writing very so much! share we keep in touch extra approximately your post on AOL?
    I need an expert on this area to resolve my problem.
    May be that is you! Taking a look forward to peer you.

    11 9 月, 2025
    回复
  • https://vm88-178.com

    Fantastic site. Plenty of helpful information here.
    I'm sending it to some pals ans also sharing in delicious.

    And obviously, thanks for your effort!

    11 9 月, 2025
    回复
  • cf68-178.com

    Hello, I enjoy reading all of your article. I wanted to write a little comment to
    support you.

    12 9 月, 2025
    回复
  • jackpot-178.com

    Hi, i read your blog occasionally and i own a similar one and i was just wondering if you get a lot of spam responses?
    If so how do you prevent it, any plugin or anything you can suggest?
    I get so much lately it's driving me mad so any help is very much appreciated.

    12 9 月, 2025
    回复
  • https://vibmobile.com/?p=13353

    Helpful info. Lucky me I discovered your web site
    by accident, and I'm stunned why this accident did not came
    about in advance! I bookmarked it.

    12 9 月, 2025
    回复
  • zowin

    Thanks very nice blog!

    12 9 月, 2025
    回复
  • 68win-178.com

    It's impressive that you are getting ideas from this piece
    of writing as well as from our dialogue made here.

    12 9 月, 2025
    回复
  • wwin-178.com

    Woah! I'm really digging the template/theme of this website.

    It's simple, yet effective. A lot of times it's hard
    to get that "perfect balance" between user friendliness
    and visual appeal. I must say you have done a excellent job with
    this. Also, the blog loads super fast for me on Internet explorer.
    Excellent Blog!

    13 9 月, 2025
    回复
  • fi88-178.com

    Excellent website you have here but I was wondering if you knew of any forums that cover the same topics discussed
    in this article? I'd really love to be a part of online community where I can get responses
    from other experienced individuals that share
    the same interest. If you have any suggestions, please let me know.
    Cheers!

    13 9 月, 2025
    回复
  • bk88-178.com

    Why viewers still make use of to read news papers when in this technological world
    all is presented on net?

    13 9 月, 2025
    回复
  • bwin-178.com

    I constantly spent my half an hour to read this web site's
    articles or reviews every day along with a mug of coffee.

    13 9 月, 2025
    回复
  • dabet88

    Hi there to all, how is everything, I think every one is getting more from this web site, and your
    views are good designed for new users.

    13 9 月, 2025
    回复
  • dafabet-178.com

    Hi there, I found your blog by way of Google
    while looking for a comparable topic, your web site came
    up, it appears to be like great. I have bookmarked it in my google bookmarks.

    Hi there, simply become aware of your blog thru Google, and found that
    it's really informative. I am gonna be careful for brussels.
    I'll be grateful in the event you proceed this in future.
    Many people will probably be benefited out of your writing.

    Cheers!

    13 9 月, 2025
    回复
  • loteria

    You made some really good points there. I checked on the internet
    for more information about the issue and found most individuals will
    go along with your views on this web site.

    13 9 月, 2025
    回复
  • v88

    I do not even know how I finished up right here, but I assumed this post was once good.
    I don't realize who you might be however certainly you're going to
    a famous blogger when you aren't already. Cheers!

    13 9 月, 2025
    回复
  • https://coral-178.com/

    Hi, I would like to subscribe for this blog to obtain most recent updates, thus where can i do it please
    help out.

    13 9 月, 2025
    回复
  • x8bet-178.com

    Hello there! I just want to offer you a huge thumbs up
    for your great information you've got right here on this
    post. I'll be coming back to your web site for more soon.

    14 9 月, 2025
    回复
  • 88k-178.com

    Hi to every one, the contents present at this website are truly awesome for people
    knowledge, well, keep up the good work fellows.

    14 9 月, 2025
    回复
  • 777bet

    I think what you posted was very logical.
    But, what about this? suppose you added a little content?
    I mean, I don't wish to tell you how to run your website, but suppose you added something that grabbed folk's attention? I mean 二次型化标准型的应用:最值求解 - 陈银波的知识小站 is kinda vanilla.
    You should glance at Yahoo's front page and note how they write post
    headlines to grab people to click. You might add a video or a related pic or two
    to grab readers excited about what you've got to say.
    In my opinion, it might bring your posts a little livelier.

    14 9 月, 2025
    回复
  • h88-178.com

    Valuable information. Lucky me I discovered your site unintentionally, and I
    am shocked why this twist of fate did not took place earlier!
    I bookmarked it.

    14 9 月, 2025
    回复
  • 8live-178.com

    Hello just wanted to give you a quick heads up. The words
    in your article seem to be running off the screen in Safari.
    I'm not sure if this is a format issue or something to do with
    internet browser compatibility but I thought I'd post to let you know.
    The design look great though! Hope you get the issue fixed soon.
    Thanks

    14 9 月, 2025
    回复
  • vwin-178.com

    It's the best time to make a few plans for the future and it's time to
    be happy. I've read this submit and if I could I want to suggest you
    few interesting things or advice. Maybe you could write subsequent articles
    referring to this article. I wish to learn even more issues approximately
    it!

    15 9 月, 2025
    回复
  • b99-178.com

    My brother suggested I would possibly like this website.
    He was once totally right. This post truly made my day. You cann't consider just how a lot
    time I had spent for this info! Thanks!

    15 9 月, 2025
    回复
  • gold88-178.com

    Keep on working, great job!

    15 9 月, 2025
    回复
  • kto-178.com

    Hi there, I check your blogs on a regular basis. Your story-telling
    style is awesome, keep up the good work!

    15 9 月, 2025
    回复
  • tlover tonet

    You are a very capable person!

    15 9 月, 2025
    回复
  • razz evil exclaim smile redface biggrin eek confused idea lol mad twisted rolleyes wink cool arrow neutral cry mrgreen drooling persevering
    回复 betvn 取消回复

    文章目录
    • 0 前言
    • 1 二次型化标准型
      • 1.1 二次型
      • 1.2 标准型
      • 1.3 二次型化标准型
    • 2 极值求解
      • 2.1 化二次型
      • 2.2 观察总结
      • 2.3 结论
    分类
    • 图
    • 工程
    • 数学
    • 数据
    • 算法
    • 记忆
    最新 热点 随机
    最新 热点 随机
    你的重复性工作,我帮你自动化 “沙滩之城” Change Data Capture (CDC) 技术初探 IPv6在物联网中的应用 IPv6首部的改进:简化与优化网络通信
    IPv6在物联网中的应用IPv6首部的改进:简化与优化网络通信IPv6:下一代互联网协议Change Data Capture (CDC) 技术初探“沙滩之城”
    上帝最喜爱的公式:欧拉恒等式 一笔画问题揭秘:轻松掌握欧拉图与欧拉回路的奥秘 图卷积网络(GCN):一个例子解释从输入到输出维度变化的完整过程 IPv6首部的改进:简化与优化网络通信 IPv6在物联网中的应用
    归档
    • 2025 年 9 月
    • 2024 年 10 月
    • 2024 年 9 月
    • 2024 年 8 月
    • 2024 年 7 月
    • 2024 年 6 月
    • 2024 年 5 月

    COPYRIGHT © 2024 陈银波的知识小站. ALL RIGHTS RESERVED.

    Theme Kratos Made By Seaton Jiang

    粤ICP备2024254302号-1

    粤公网安备44030002003798号